APPENDIX 1: - PLASMOID SYSTEM FOR CARS DESCRIPTION SCHEMATIC AND PHOTOS

DRAFT 518,400 B KMV - PART TWO OF TWENTY

MALCOLM V of SCOTLAND | MALCOLM BENDALL THURSDAY 22ND SEPTEMBER 2022

LIST OF DIAGRAMS IN PART 2

DIAGRAM 66 – TEST RESULTS

DIAGRAM 67 – TEST RESULTS

DIAGRAM 68 – PETROL TEST ENGINE 380 CC SINGLE CYD THUNDERSTORM GENERATOR

DIAGRAM 69 - PHOTO OF RECORDING OF TEST RESULTS SHOWN IN DIAGRAMS 43 AND 44

DIAGRAM 70 – 1,000 FRAMES PER SEC PHOTO OF PLASMOIDS ESCAPING FROM SPHERE

DIAGRAM 71 – THUNDERSTORM GERERATOR SYSTEM

DIAGRAM 72 – THUNDERSTORM GENERATOR SCHEMATIC

- DIAGRAM 73 THUNDER STORM GENERATOR FLOW CHART
- DIAGRAM 74 THUNDERSTORM GENERATOR PISTONS TEST PAD
- DIAGRAM 75 TERRA TEK RESULT SHEETS
- DIAGRAM 76 CHROMIUM, NICKEL, MAGNANESE AND IRON CHART
- DIAGRAM 77 MAGNESIUM, CALCIUM, ARSNIC AND IRON CHART
- DIAGRAM 78- SODIUM, POTASSIUM, CHLORIDE AND ELECTRICAL CONDUCTIVITY

DIAGRAM 79 – MAGNESIUM, SODIUM, POTASSIUM AND CALCIUM SALTS CHART

DIAGRAM 80 – TOROIDAL IMPLODED 100 PI SPHERE MODEL OF THE ELEMENTS (MOE) ONE TURN SHOWING MAGNESIUM AND CALCIUM ARE OPPOSITE EACH OTHER ON THE SAME FREQUENCY PLANE AND SODIUM AND POTASSIUM SHARE THE NEXT ADJACENT PLANE AND ARE ALSO OPPOSITE EACH OTHER

DIAGRAM 81 – CHEMICAL OXYGEN DEMAND, AMMONICAL NITROGEN, PHOSPHATE AND NITRATE CHART

DIAGRAM 82 – ALKALINITY, AMMONIA, AMMONICAL NITROGEN AND TOTAL OXIDISED NITROGEN CHART

DIAGRAM 83 - COPPER, CYANIDE, TOTAL SUSPENDED SOLIDS AND AMMONIA CHART

APPLICATIONS FOR A PLASMOIDS FORM AND FUNCTIONS THUNDERSTORM GENERATOR.

The Thunderstorm Generator is a system whereby the cold, vacuum and heat, pressure, shockwaves flow alternatively and sequentially from the exhaust and inlet ports of an internal combustion engine are utilized to retrieve and recycle that generated and stored potential energy. That energy is used to sequester, by the use of a Thunderstorm Tornado, generated free protons and electrons that are concentrated by a stream of Plasmoids (EVO's). The Plasmoids confine and store those free Electron and Protons by generating an imploded sphere torus geometry that manifests a homeostatic self-induced, self-structuring, self-sustained, fractal Toroidal electromagnetic confinement field that's captures and confines and isolates micro-plasma. That electromagnetic confinement field is effective and fractal once having been formed and energised by collapsing bubbles within a column of water. The column of water being subjected to alternating vacuum and pressure pulses sourced by the normal action of a piston within an internal combustion engine alternatively generate and collapse the bubbles. These are the same naturally occurring forces of nature that produces the enormous power of a Thunderstorm or Cyclone. Cool moist MSAART enriched air moving into the engine, structured using resonant spheres and cylinders of different diameters, interacts with hot dry air encapsulating it as it moves out in the opposite direction from the engine. This releases enough energy at an atomic level within the exhaust stream to fundamentally alter its composition eliminating toxic chemical wastes such as Carbon monoxide, nitrous oxide, Hydrocarbons and other toxic harmful compounds. The exhausts net positive ions which are also bad for life are replaced with net negative ions within the exhaust stream which support life. Simultaneously within the vacuum, imploding into the engine, together the MSAART'S and water vapor act to both disassociate the water into Hydrogen (Protium) and oxygen assisted by the catalytic and Tribone effects of the Catalytic Tornado Resonator's (CTR) 316 stainless steel spheres and cylinders. The MSAART Plasmoids alone, once reaching their effective charge density creates a viable Zero Singularity Zero Point, due to charging received by the Thunderstorm Tornado, dissociates the Hydrogen (Protium) into its component electron and Proton. This atomic and molecular fuel is fed back into the engine to add and enhance the burn and therefore explosive force of the normal Hydrocarbon fuel. Other elements that contain Neutrons within the imploding vacuum stream are unaffected by the forces applied by the MSAART Plasmoids as they are not powerful enough to act on the nucleus therefore producing no nuclear by products making the processes by-products non radio- active, toxin free and with a life enhancing Negative implosive charge.

THUNDERSTORM GENERATOR DESCRIPTION SCHEMATIC AND PHOTOS

SPHERICAL TORNADO ATOMIC THUNDERSTORM GENERATOR AND ELECTRON SEQUESTING PLASMOID TECHNOLOGY TEST RESULTS

INTRODUCTION

The invention, and now worldwide addiction and necessity, of the automobile has created the reliance on the hydrocarbon based fuel which powers them. This has in turn led to the first and second world wars and put the world at risk of a third world war fighting literally for power. Regrettably those who lust after this power mostly seek to empower themselves and in fact seek to disempower the individuals, communities and countries that rely on fuel.

This novel new Plasmoid-based device over the next decade will generate \$4 Trillion USD for the global community, which will be noticeable on a grand scale at the grass roots level, that is, the petrol pump. In environmental terms, it means cleaner air, cheap water and heating, cheaper food, cheaper housing and higher oxygen levels in inner cities and around the globe. The device also empowers the individual. It dis-empowers the establishment, global corporations and banks that have enslaved the individual.

AIM

The aim is to implement the theories and facts outlined in Appendix 7 that are the result of 40 years of research. This includes 14 years away from Australia travelling around the world visiting ancient ruins and libraries and museums reading ancient Sanskrit, Sumerian, Greek, Egyptian and Hebrew texts. A further aim is to demonstrate and document the capture and use of the 66% of energy currently wasted by standard exhaust systems on all internal combustion engines. This will be shown by creating Plasmoids to act as thunderstorm harvesters. Plasmoids are a self-structuring closed system electron vacuum cleaners that capture and put into a toroidal orbit that generates an electromagnetic containment field that isolates the enormous amount of energy held within the Plasmoid. They can be a replacement for energy from hydrocarbon based fuels.

METHOD

A standard, off the shelf, single cylinder, 380 cc, four stroke, petrol, 5,500 Watt generator (Ref 2) has been retro - fitted with a waste energy recovery and simultaneous, electrical and Plasmoid based, fuel generation system. This novel system works by utilizing the waste 66% of exhaust energy, which escapes the internal combustion engine as heat and pressure, to create Plasmoids, which can be harvested within the combustion chamber.

This is achieved by using a plasma spark obtained by retrofitting the standard ignition system. The standard carburetor is used to supply fuel to the engine and therefore pre-heat the modified novel Spherical Tornado Atomic Thunderstorm Electron Sequestering Plasmoids

PLASMOID ANGEL ONCE AND FOR ALL DEFEATS MAXWELL'S DEMON

THUNDERSTORM GENERATOR DESCRIPTION SCHEMATIC AND PHOTOS

exhaust system to over 350 degrees Celsius. This pre-heating is critical to evoke the reverse Kelvin – Joule effect (Ref 3), the Kelvin thunderstorm effect (Ref 4), the Hilshe tube effect (Ref 5), the Bendall translates (Ref 1) and several other both defined and undefined but measurable observations.

These effects in combination, when timed and structured correctly, energise the Torus Plasmoids that in turn vacuum up all the free electrons generated by these multiple complementary effects. These Torus Plasmoids, being self - structuring and closed systems, do not emit heat themselves. But when free electrons are wrapped up and isolated, they have the power to extract all the free electrons, and therefore also heat from the device. The Thunderstorm effect is induced by structuring the high pressure, hot, dry, exhaust gas flow anti-clockwise spin to move against a clockwise counter spin and flow of low pressure cold moist air. This generates an electric charge in balance. This cold air has been pre - seeded with Plasmoids created in water, by the implosive collapse of de-gassed bubbles.

These are created within a pulsed, structured vacuum chamber filled with pre-ionised air, tap water and stainless steel wool. These are designed on principles known to those skilled in the art of enhancing these effects.

RESULTS

We have measured the anomalous heating and cooling of this novel exhaust device with eight thermocouples and recorded the results on two separate data loggers, connected to two separate computers. We have done the following calculations based on our data. This demonstrates that energy, in excess of the waste heat and pressure, was being produced by this Spherical Tornado Atomic Thunderstorm Electron Sequestering Plasmoids device.

The energy (in Kwh) in a gas stream is the weight in Kilograms per second multiplied by the specific heat multiplied by the temperature difference in Kelvin = Kilo Joules per second, [1 Joule per second = 1 watt per second]. The motor is 380 cc say running at 4,000 RPM. This is 2,000 inspirations a minute, being a volume of approximately 760 Litres of air per minute. That is 0.760 Cu/M assuming it is normal air that has a specific gravity of 1.245 Kg/Cu M. (0.760 x 1.245 / 60 seconds = 0.0157Kg per second, multiplied by the 800 degrees Kelvin temperature (526 Degrees C). The difference is then multiplied by the specific heat of air (0.812Kj). This equals 10.918 Kj / per second = 10.918 Kwh.

These calculations have been done on temperatures taken from the outside of the one inch diameter stainless steel heat shield, not the central ¾ inch and ½ inch reactor pipes. Those reactor pipes have been proven to reach temperatures in excess of 1,200 Degrees C, as evidenced by the melting of brass fittings (950 Degrees C [1,223 Kelvin] melting temperature), and the deformation of the stainless steel reactor elements (forge temperature of 1,250 Degrees C [1,523 Kelvin)].

MSAART EVO ANGEL ONCE AND FOR ALL DEFEATS MAXWELL'S DEMON

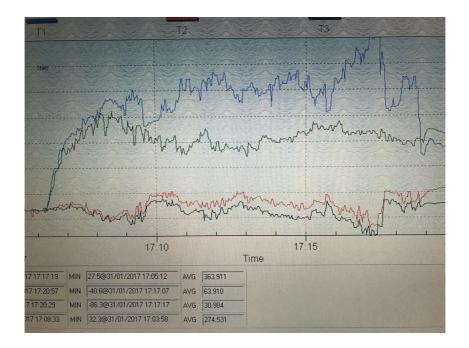



DIAGRAM 66 - TEST RESULTS

DIAGRAM 67 – TEST RESULTS

MSAART EVO ANGEL ONCE AND FOR ALL DEFEATS MAXWELL'S DEMON

PART 2 OF 20 – MSAART PATENT APPLICATION NOTES DRAFT 518,400 – 22:22:22 THUR 22ND SEPT 2022 78 © STRIKE FOUNDATION GUARANTEE LIMITED | MALCOLM BENDALL 2022 | GRAPHICS - STEVE EARL

APPLICATIONS FOR A PLASMOIDS FORM AND FUNCTIONS THUNDERSTORM GENERATOR DESCRIPTION SCHEMATIC AND PHOTOS

THE THUNDERSTORM GENERATOR

Energy of over 22,000 Kwh, although not directly measured with thermocouples, has been generated as evidenced by examination of the early prototypes. The creation of volcano-like pits on the surface of the reactor elements, [as documented by a high magnification microscope linked to a computer], and visible light streaks escaping from the reactor chamber prove both the existence and charging of Plasmoids.

CONCLUSION

Plasmoids have been proven by our test results to be both an effective waste energy capturing mechanism and alternative fuel. They use and demonstrate quantum effects evoked by the creation of Plasmoids charged by a Thunderstorm. By simply imitating and copying the Thunderstorm in its most basic configuration we have tapped into one of natures most powerful electrical generators hitherto not achieved, let alone harvested by using the implosive Vortex principles of the Thunderstorm Generator Engine technology.

THE THUNDERSTORM GENERATOR

The devise is novel. The Plasmoids formed with pre-ionised air at a specific frequency are generated by collapsing cavitation bubbles, which are created by a vacuum and then imploded by applying pressure. The Plasmoids have proven to be effective heat sinks, electron storage devices, communication devices and safe energy discharge platforms.

The Plasmoids have demonstrated 'quantum swarm entanglement 'that was achieved by sharing the same frequency at the creation of the singularity zero point of the Toroidal structure. This common frequency blueprint enables the group to share equally the total electron input throughout the Plasmoid population, regardless of distance and time. This is because the singularity points in the centre of the Toroidal structure are not subject to either influence. By extracting and structuring the free electrons within the Plasmoid's internal Toroidal structure it does not emit any energy. But it is still capable of equalizing the electron distribution through the space - time continuum by mechanisms that are not completely understood. However, based on the data and the underlying knowledge base and Toroidal structure, one can confidently postulate what processes have been at work. Plasmoids have shown they have the ability to capture and release electrons to each other within the Plasmoid swarm. This statement is based in the fact that a swarm of Plasmoids must stay at the same frequency. Therefore the Plasmoids must expand in Area – Time – volume (ATV) at the same rate. Since they emit a lower or higher frequency, they will be absorbing or transmitting energy. In response they will create a group homeostasis that is immune to any direct influence applied to any one member of the group.

MSAART EVO ANGEL ONCE AND FOR ALL DEFEATS MAXWELL'S DEMON

PART 2 OF 20 – MSAART PATENT APPLICATION NOTES DRAFT 518,400 – 22:22:22 THUR 22ND SEPT 2022 79 © STRIKE FOUNDATION GUARANTEE LIMITED | MALCOLM BENDALL 2022 | GRAPHICS - STEVE EARL

THE THUNDERSTORM GENERATOR

This means that the Plasmoids are a base for humans to venture into space. They also represent a new clean, green global energy revolution.

Plasmoids are a fractal technology. They can be used in many ways other than as producing Atomic fuel from water and as Atomic batteries.

For instance:

- 1: Communication technologies at above light speed (at any scale);
- 2: Heat shields and cold shields;
- 3: Plasmoid weapons;
- 4: Plasmoid force field shields;
- 5: Plasmoid propulsion devices that are light weight;
- 6: Plasmoid energy storage and distribution systems. These can be applied to all of humankind's current and future needs and devices and can used on old technologies.

DIAGRAM

68 – PETROL TEST ENGINE

MSAART EVO ANGEL ONCE AND FOR ALL DEFEATS MAXWELL'S DEMON

PART 2 OF 20 – MSAART PATENT APPLICATION NOTES DRAFT 518,400 – 22:22:22 THUR 22ND SEPT 2022 80 © STRIKE FOUNDATION GUARANTEE LIMITED | MALCOLM BENDALL 2022 | GRAPHICS - STEVE EARL

THE THUNDERSTORM GENERATOR

DIAGRAM 69 - THE THUNDERSTORM GENERATOR TEST RESULTS DESCRIBED ABOVE ARE SHOWN BEING RECORDED

DIAGRAM 70 - THE PHOTOS BELOW CAPTURES AT 1,000 FRAMES PER SECOND AN OVERCHARGED PLASMOID ESCAPING FROM THE 4" 316 STAINLESS STEEL SPHERE THAT IS PART OF THE CATALYTIC TORNADO RESONATOR THE IMAGE PROVES IMPLODING LIGHT SEEN FOR THE FIRST TIME IN HISTORY ORIGINATED FROM THE ENERGY EMMITED AS A RESULT OF ATMOSPHERIC ARGONS IMPLODING ELECTRON ORBITS ENERGY RELEASE.

DIAGRAM 71 – IMPLODING LIGHT FROM TRAIL OF A PLASMOID

DIAGRAM 72 – IMPLODING LIGHT FROM TRAIL OF A PLASMOID

THE THUNDERSTORM GENERATOR

LIST OF REFERENCES

- 1.) BENDALL DRAFT 266.666 SOTU
- 2.) WELCO WEBSITE FOR GENERATOR
- 3.) KELVIN JOULE PAPER
- 4.) LORD KELVIN 1867 THUNDERSTORM MACHINE
- 5.) RAUNGE HILSCH TUBE PAPER
- 6.) W.H.BOSNICK PLASMOID TERM FOUNDER BORN 1916 DIED 1958

EXPERIMENTAL STUDY OF PLASMOIDS REV. 106, 404 - PUBLISHED 1 MAY 1957; ERRATUM PHYS. REV 107, 1736 (1957)

7.) K.D.SINELNIKOV et al., Proceedings of the Second International conference on the peaceful uses of atomic energy (United Nations, Geneva, 1958), Vol 31, p292. Google scholar

- 8.) KEPLER
- 9.) PYTHAGORAS
- 10.) NICOLA TESLA and SWAMI BAR
- 11.) WALTER RUSSELL
- 12.) KEN SHEPARD,
- 13.) FLYSHMAN AND PONDS
- 14.) STANLEY MEYER, PAUL PANTONE, GUY OBOLINSKY, JOE CELL

DEFINITIONS :- WIKIPEDIA PLASMOID DEFINITION

"A PLASMOID IS A COHERENT (TOROIDAL) STRUCTURE OF PLASMA AND MAGNETIC FIELDS. PLASMOIDS HAVE BEEN PROPOSED TO EXPLAIN NATURAL PHENOMENA SUCH AS BALL LIGHTNING, MAGNETIC BUBBLES IN THE MAGNETOSPHERE AND OBJECTS IN COMET TAILS, IN SOLAR WIND, IN THE SOLAR ATMOSPHERE AND IN THE HELIOSPHERIC SHEET."

MSAART EVO ANGEL ONCE AND FOR ALL DEFEATS MAXWELL'S DEMON

THE THUNDERSTORM GENERATOR

The Thunderstorm Generator System

DIAGRAM 73 -

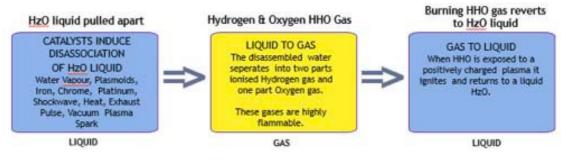
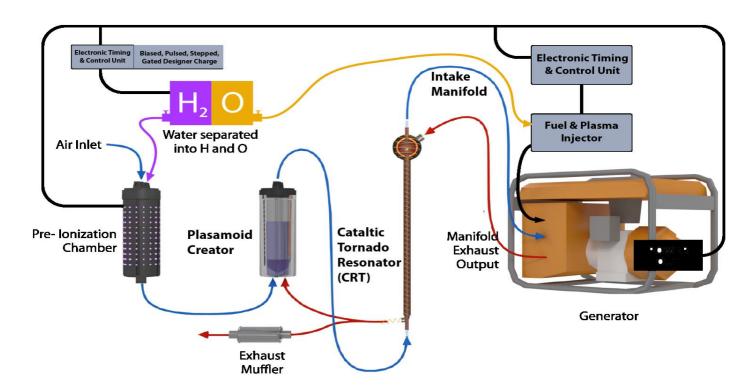
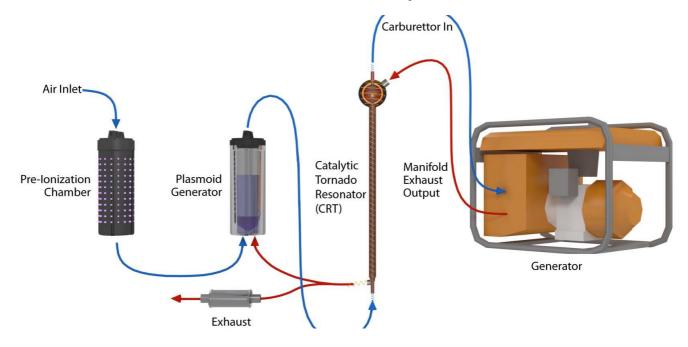



DIAGRAM 74 -

THE THUNDERSTORM GENERATOR

The Thunderstorm Generator System fully integrated schematic


APPLICATIONS FOR A MSAART EVO'S FORM AND FUNCTIONS

PART 2 OF 20 – MSAART PATENT APPLICATION NOTES DRAFT 518,400 – 22:22:22 THUR 22ND SEPT 2022 83 © STRIKE FOUNDATION GUARANTEE LIMITED | MALCOLM BENDALL 2022 | GRAPHICS - STEVE EARL

THE THUNDERSTORM GENERATOR

DIAGRAM 75 -

The Thunderstorm Generator System

THE THUNDERSTORM GENERATOR SYSTEM BASIC BASE MODEL SCHEMATIC

DIAGRAM 76 ABOVE – THUNDERSTORM GENERATOR TEST PAD

APPENDIX 2: - TERRA TEK RESULT SHEETS

DIAGRAM 64

DIAGRAM 77 -

Enitial Enterprise Drive Four Ashes Industrial Estate Wolverhampton WV10 7DE

For the attention of Anne Morrison

Report No:	B24232
issue No	01

LABORATORY TEST REPORT

Project Narr	10	NORLANDS			
Project Nurr		B24232	Date samples received		19/02/2020
Your Ref			Date written instructions receiv	red	19/02/2020
Purchase O	rder		Date testing commenced		19/02/2020
		Please find enclosed the re		DW	
Figure / Table	Test Quantity		Description		ISO 17025 Accredited
1	5	Client Specified Suite - Water			See Report
App W1 App W2	~	Deviating Samples - Water Summary of In-House Analytical Test	Methods - Wiater		N/A N/A
Remarks :					
Issued by : Approved Signal	Stephen Lanç tories :	gman Date of Issue :	05/03/2020		used in this report is sub-contracted
G Wilson (JMD/L	aboratories Direc	tor), S Langman (Laboratory Coordinator)			
	All r This rej multisite accre The encl our report	re notified to the contrary, samples will b The results reported relate to sam esuts contained in this report are provisi port should not be reproduced except in aditation the testing contained in this rep osed results remain the property of Terri- if we have not received cleared kinds in ted in this report are UKAS accredited scope of UKAS	ples received in the laboratory or onal unless signed by an approve full without the written approval c ort may have been performed at a Tek Limited and we reserve the accordance with our standard te	Ny. 2d signatory 6 the laboratory. another Terra Tek 9 right to withdraw rms and conditions	laboratory.
	Fe	edback on the this report may be left via	a our website www.terratek.co.uk/	contact-us	
		1990-2015	Tet +44 (0)		44 (0)121 356 3599 am@terratek.co.uk zw.terratek.co.uk d in Soutand No. 12199

Head Office : 62 Rochsolloch Road, Airdrie, ML6 9BG

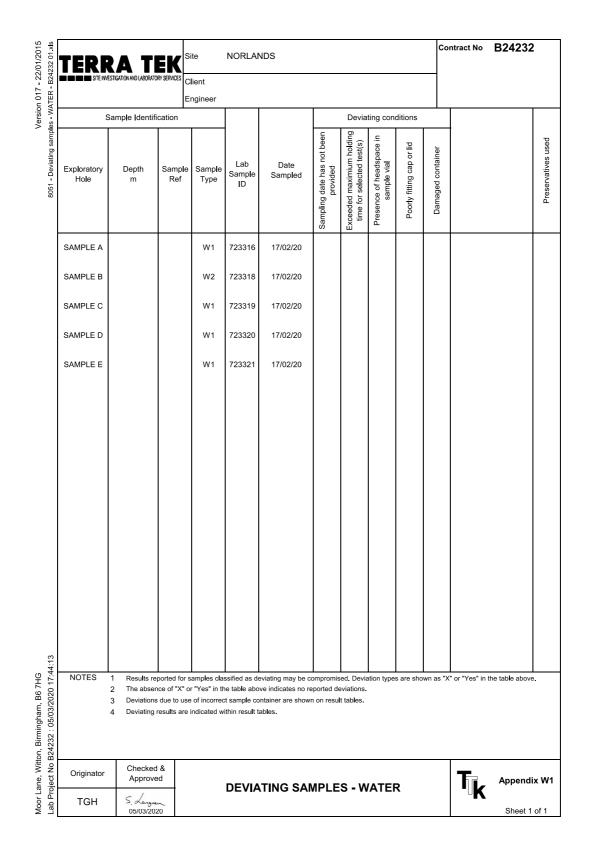

			Lab Project No B2 Moor Lane, W						six.10 25232 24232			atiu≳ - 0414 0 noi≳19V
DAB	Originator			SAMPLE E	SAMPLE D	SAMPLE C	SAMPLE A		Hole	S	STE IME	TERR
S. Langram 05/03/2020	Checked & Approved	Accredit							Depth	Sample Identification	STE INVESTIGATION AND LABORATORY SERVICES	RA TI
20	g 🏷	Ten ation U=UK							Sample Ref	cation		
		Limits a Tek Anal AS N=No a		W1	W1	W1	W1		Sample Type		Client Engineer	Site
		Limits of Detection Terra Tek Analysis Method Accreditation U=UKAS N=No accreditation		723321	723320	723319	723316		Lab Sample ID			
<u>c</u>		u S/C 1		86	85	52	100	hð\	Arsenic			NORL
	CHEMICAI ANAI YSIS	0.08 S/C		<0.08	<0.08	<0.08	<0.08	l/6rl	Cadmium			NORLANDS
נ ד נ		0.4 S/C		42	75	26	53	µg/l	Chromium			
		1 S/C		10	15	9	8	l/Bri	Lead			
000	202	0.5 S/C		<0.5	<0.5	<0.5	<0.5	µg/l	Mercury			
		0.7 S/C		7,500	5,400	1,800	40	µg/l	Copper			
		0.3 U		110	130	64	140	µg/I	Nickel			
		0.4 S/C U		320	260	270	220	hð/	Zinc			
	* - dev	0.004 S/C U		2.10	1.20	2.00	2.20	hg/I	Iron			
	iating n	0.06 S/C		120	74	120	150	hðų	Manganese			
	esult (re	1 TP117 U		51	47	32	72	mg/l	Calcium			
	KEY * - deviating result (refer to Appendix W1 for details)	1 TP117 U		75	73	24	86	mg/l	Magnesium			
	∃Y Append	1 TP117 N		1,109	1,080	462	1,279	mg/l	Sodium			
	ix W1 f	1 TP117 N		549	532	221	638	mg/l	Potassium			
	or deta	0.01 TP062 U		0.07	0.03	0.53	1.43	mg/l	Total Cyanide			
	ils)	0.1 TP184 N		28.6	23.4	26.1	21.3	mg/l	Nitrate			ç
		0.01 TP184 N		<0.01	1.28	0.59	<0.01	mg/l	Nitrite			Contract No
		2.5 TP184 N		<0.01 7,204.9 1,316.7	6,730.1	2,824.7	7,906.8	mg/l	Alkalinity - Carbonate a CaCO3	as		
Sheet 1 of 2	Figure 1	0.1 TP184 N		1,316.7	1,166.4	446.7	7,906.8 1,385.8 1,787.7	mg/l	Ammoniacal Nitrogen (N)	as		B24232
of 2	¥ 1	0.1 TP184 N		1,698.5	1,504.6	576.3	1,787.7	mg/l	Ammonia (as NH4)			

DIAGRAM 78 -

DIAGRAM 80-

Moor Lane, Witton, Birmingham, B6 7HG Version 008 - 19/06/2007 Lab Project No B24232 : 05/03/2020 17:42:02 alx 20 Sc2428 - Rate Maxi WATER - B24232 02 xls SAMPLE A SAMPLE E SAMPLE D SAMPLE C Originator DAB Hole **7**0 Sample Identification Depth m N Checked & Approved S. Langram Accreditation m Sample Ref T Limits of Detection Terra Tek Analysis Method U=UKAS N=No accreditation Engineer Client Site Sample Type Ž ₹ 1 ×1 Ž Lab Sample ID 723316 723321 723320 723319 0.02 TP184 N 11.55 9.11 16.49 NORLANDS CHEMICAL ANALYSIS 5.95 mg/ Phosphate Biochemical oxygen ∪ S/C 0. 3 8.2 8.0 8.4 mg/ demand 3,100 2,200 ∪ S/C /gm 1,500 770 Chemical oxygen demand 0.3 TP162 N 876.5 .086 .066 355.6 mg/ Total Organic Carbon ∪ S/C 3<u>.</u>9 3.7 2.6 3.6 mg/ Total Oxidised Nitrogen TP081 4 4 108 40 mg/ Suspended Solids 1 TP184 1,737.8 503.6 1,796.3 1,593.9 mg/ Chloride TP108 11,545 5,375 12,445 3 µS/cm Electrical conductivity 160 ND - Not Detected 4 TP170 U mg/ 45 109 136 123 Sulphate (as SO4) deviating result (refer to Appendix W1 for details) 0.01 TP066 0.10 0.12 0.11 0.03 /gm Sulphide TP020 U 8.8 8.8 .8 8 8.7 pН 0.50 0.59 0.53 0.53 /gm N/C **Dissolved Methane** KEY z≀ Ŋ B ND ND Visable Oil & Grease Contract No B24232 ╤ Sheet 2 of 2 Figure 1

hw ,ens. Lane, Wit

DIAGRAM 81 -

PART 2 OF 20 – MSAART PATENT APPLICATION NOTES DRAFT 518,400 – 22:22:22 THUR 22ND SEPT 2022 89 © STRIKE FOUNDATION GUARANTEE LIMITED | MALCOLM BENDALL 2022 | GRAPHICS - STEVE EARL

6 s						D04000
Version 009 - 24/06/2009 sthods Water - B24232 01.xls	TERI	RA TEK	Site NORLA	NDS	Contract No	B24232
9 - 24 r - B24	SITE IN	VESTIGATION AND LABORATORY SERVIC	^{ES} Client			
on 00 Watei		1	Engineer			
Version 009 - 24/06/2009 - Test Methods Water - B24232 01 xls	Method Code	Re	eference	Description of Method	ISO17025 Accredited	
8200 - Te	TP020	APHA/AWWA, 19th e	dition	Determination of pH using pH meter	Yes	
۵	TP035	BS1377, Part 3, 1990: Purposes.	Soils for Civil Engineering	Determination of dissolved solids by gravimetry	Yes	
	TP054	MAFF Book 427: The Materials: Method 8	Analysis of Agricultural	Determination of boron by colorimetry	Yes	
	TP057	APHA/AWWA, 19th e	dition: Method 3500Cr-D	Determination of hexavalent chromium by colorimetry	Yes	
	TP060	MEWAM method: Phe 4-aminoantipyrine met	nols in water and Effluents: hod	Determination of monohydric phenols by steam distillation/colorimetry	Yes	
	TP061	MEWAM method: Cya	nide in Waters etc	Determination of free cyanide by colorimetry	Yes	
	TP062	MEWAM method: Cya	nide in Waters etc	Determination of total cyanide by steam distillation/colorimetry	Yes	
	TP063	MEWAM method: Cya	nide in Waters etc	Determination of complex cyanide by calculation	Yes	
	TP064	MEWAM method: Det ,1985	ermination of Thiocyanate	Determination of thiocyanate by colorimetry	Yes	
	TP066	MEWAM method: Sul Effluents, Tentative M		Determination of sulphides by colorimetry	Yes	
	TP068	APHA/AWWA, 19th e	dition: Method 4500-CI-D	Determination of chlorides by titrimetry	Yes	
	TP078	APHA/AWWA, 18th e	dition: Method 4500C	Determination of ammoniacal nitrogen by colorimetry		
	TP079	In-house documented	method	Determination of anionic detergent (MBAS) by colorimetry		
	TP080	APHA/AWWA, 19th e	dition: Method 4500-F-C	Determination of fluoride by ion selective electrode	Yes	
	TP081	APHA/AWWA, 19th e	dition: Method 2540D	Determination of suspended solids by gravimetry	Yes	
	TP102	APHA/AWWA, 19th e USEPA Method 610	dition: Method 6640B	Determination of polyaromatic hydrocarbons extractable in dichloromethane, by GC/MS	Yes	
	TP103	Texas Natural Resour Commission Method 1 3510C	ce Conservation 005 & USEPA Method	Determination of Extractable Petroleum Hydrocarbons (>C8 - C40) by GC/FID		
	TP108	APHA/AWWA, 19th e	dition: Method 2510B	Determination of electrical conductivity by electrode	Yes	
	TP112	USEPA Method 8100		Determination of polyaromatic hydrocarbons extractable in dichloromethane/hexane, by GC/MS		
12:06	TP113	APHA/AWWA, 19th e USEPA Method 2870[Determination of phenol by GC/MS		
Moor Lane, Witton, Birmingham, B6 7HG Lab Project No B24232 : 05/03/2020 17:42:06	2. re	Where a parameter ca sponsibility for the qual	annot be determined in hous ity of subcontracted tests an	n parameter. This information is available on request. se it is our policy to use a UKAS accredited laboratory where id the performance of the subcontractor chosen. Where there rra Tek Approved Subcontractors list, which is subject to per	e is no known Ul	AS aboratory for a
ne, Witto ect No B	Originator	Checked & Approved	SUMMARY OF II	N-HOUSE ANALYTICAL TEST METHOD	s T	Appendix W2
Moor Lane, [\] Lab Project I	N/A	N/A		(WATER)	^s F k	Sheet 1 of 2

DIAGRAM 82 -

TED	RA TEK	Site NORLA	NDS	Contract No	B24232
	INVESTIGATION AND LABORATORY SERVICE	ES Client		+	
		Engineer			
Method Code	Re	ference	Description of Method	ISO17025 Accredited	
TP117	APHA/AWWA, 19th eo	lition: Method 2340B	Determination of hardness of water (calculation)	Yes	
TP118	APHA/AWWA, 19th eo	lition: Method 2320B	Determination of total alkalinity by titration	Yes	
TP128	APHA/AWWA, 19th eo USEPA Method 2870E		Determination of Semi-Volatile Organic Compounds by GC/MS	Yes	
TP130	Texas Natural Resourd Commission Method 1		Determination of Extractable Petroleum Hydrocarbons (EPH-CWG C8-C40) by GC/FID		
TP132	APHA/AWWA, 19th eo	lition: Method 4500-NO2-B	Determination of nitrite by colorimetry	Yes	
TP133	In-house documented	method	Determination of chemical oxygen demand by colorimetry		
TP146	USEPA Methods 8082	A & 3665A	Determination of Total & Speciated 7 PCB Congeners by GC/MS SIM		
TP149	USEPA Methods 8082	A & 3665A	Determination of Total & Speciated WHO 12 PCB Congeners by GC/MS SIM		
TP155	USEPA method 5021. GRO method	Wisconsin DNR modified	Determination of volatiles in water by GC/MS headspace	Yes	
TP156	APHA/AWWA, 19th eo (filtration)	lition: Method 3030B	Determination of dissolved metals by ICP-MS	Selected	
TP159	USEPA Method 1671		Determination of glycols in water by GC/FID DI		
TP160	USEPA Method 556		Determination of formaldeyde in water by GC/MS		
TP162	USEPA Method 9060A		Determination of TOC/DOC in water by HT Combustion/NDIR		
TP170	In-house documented	method	Determination of sulphate by ICP-OES spectroscopy	Yes	
TP179	In-house documented	method	Determination of nitrate by ion selective electrode		
Notes					
	Where a parameter ca responsibility for the quali	nnot be determined in hous ty of subcontracted tests ar	n parameter. This information is available on request. se it is our policy to use a UKAS accredited laboratory where d the performance of the subcontractor chosen. Where ther rrra Tek Approved Subcontractors list, which is subject to pe	e is no known Uł	KAS laboratory fo
Originato	or Checked & Approved	SUMMARY OF I	N-HOUSE ANALYTICAL TEST METHOD		Appendiz
N/A	N/A		(WATER)		L

DIAGRAM 83 -

PART 2 OF 20 – MSAART PATENT APPLICATION NOTES DRAFT 518,400 – 22:22:22 THUR 22ND SEPT 2022 91 © STRIKE FOUNDATION GUARANTEE LIMITED | MALCOLM BENDALL 2022 | GRAPHICS - STEVE EARL

APPENDIX 3: - TERRA TEK RESULT SHEET ANALYSIS

ELEMENTS AND MOLECULES SUBTRACTED FROM THE NORLANDS TIP LEACHATE FLUID AFTER 3 MINUTES WITHIN THE PLASMOID CREATOR

ELEMENTS SUBTRACTED FROM THE LEACHATE AFTER 3 MINUTES OF OPERATION

MAGNESIUM (86 – 24 mg/L)	DOWN <mark>72%</mark>
SODIUM (1,279 – 462 mg/L)	DOWN <mark>64%</mark>
POTASSIUM (638 – 532 mg/L)	DOWN 17%
CALCIUM (72 – 32 mg/L)	DOWN <mark>44%</mark>
CHLORIDE (1796 -504)	DOWN 70%
ARSENIC (100 – 52ug/L)	DOWN 48%
CHROMIUM (53 – 26 ug/L)	DOWN 49%
NICKLE (140 – 64 ug/L)	DOWN 54%
IRON (2.20 – 2.00 ug/L)	DOWN 10%
MANGANESE (150 – 120 ug/L)	DOWN 20%

MOLECULES SUBTRACTED FROM THE LEACHATE AFTER 3 MINUTES OF OPERATION

	-
DISSOLVED <i>METHANE</i> (0.59 – 0.53 mg/L)	DOWN 10%
AMMONIA [AS NH4] (1,787 – 576)	DOWN 68%
AMMONIACAL NITROGEN [AS N] (1,386 - 446 mg/L)	DOWN <mark>68%</mark>
TOTAL OXIDISED NITROGEN (3.6 – 2.6 mg/L)	DOWN 28%
NITRITE (0.01 – 0.59 mg/L)	UP 98%
NITRATE (21.3 – 26.1mg/L)	
CHEMICAL OXYGEN DEMAND (2,200 – 770 mg/L)	
BIOCHEMICAL OXYGEN DEMAND (8.4 - 8.0 mg/L)	DOWN 5%
SULPHATE (136 – 45 mg/L)	DOWN 67%
SULPHIDE (0.10 – 0.03)	DOWN 70%
PHOSPHATE (16.49 – 5.95)	DOWN <mark>65%</mark>
TOTAL ORGANIC CARBON (990 – 355 mg/L)	DOWN <mark>65%</mark>
ALKALINITY – CARBONATE as CaCO3 (7,906 – 2,825 mg/L).	DOWN <mark>65%</mark>
TOTAL CYANIDE (1.43 – 0.53 mg/L)	DOWN <mark>63%</mark>
ELECTRICAL CONDUCTIVITY (12,445 -5,375 uS/cm)	DOWN 43%

ELEMENTS AND MOLECULES ADDED TO THE NORLANDS TIP LEACHATE FLUID AFTER 3 MINUTES WITHIN THE PLASMOID CREATOR

ELEMENTS ADDED TO THE LEACHATE AFTER 3 MINUTES OF OPERATION

COPPER (40 – 1,800 ug/L)	.UP 4,	500%
ZINC (220 – 270 ug/L)	.UP	18%
LEAD (8 – 9 ug/L)	.UP	11%

MOLECULES ADDED TO THE LEACHATE AFTER 3 MINUTES OF OPERATION

NITRITE (0.01 – 0.59 mg/L)UP	98%
NITRATE (21.3 – 26.1mg/L)UP	18%
SUSPENDED SOLIDS (40 – 108 mg/L)UP (63%
PH (PH 8.7 - PH 8.8)UP	1%

PART 2 OF 20 – MSAART PATENT APPLICATION NOTES DRAFT 518,400 – 22:22:22 THUR 22ND SEPT 2022 93 © STRIKE FOUNDATION GUARANTEE LIMITED | MALCOLM BENDALL 2022 | GRAPHICS - STEVE EARL

ELEMENTS AND MOLECULES SUBTRACTED FROM THE NORLANDS TIP LEACHATE FLUID AFTER 5 MINUTES WITHIN THE PLASMOID CREATOR

ELEMENTS SUBTRACTED FROM THE LEACHATE AFTER 5 MINUTES OF OPERATION

MAGNESIUM (86 – 73 mg/L)	DOWN 15%
SODIUM (1,279 – 1,080 mg/L)	DOWN 15%
POTASSIUM (638 – 532 mg/L)	DOWN 15%
CALCIUM (72 – 47 mg/L)	DOWN <mark>35%</mark>
CHLORIDE (1796 – 1594)	DOWN 11%
IRON (2.20 – 1.20 ug/L)	DOWN 46%
MANGANESE (150 – 74 ug/L)	DOWN 50%
ARSENIC (100 – 85 ug/L)	DOWN 15%
NICKLE (140 – 130 ug/L)	DOWN 7%

MOLECULES SUBTRACTED FROM THE LEACHATE AFTER 5 MINUTES OF OPERATION

DISSOLVED METHANE (0.59 – 0.53 mg/L)	DOWN 10%
AMMONIA [AS NH4] (1,787 – 1,505)	DOWN 16%
AMMONIACAL NITROGEN [AS N] (1,386 - 1,166 mg/L)	DOWN 16%
TOTAL OXIDISED NITROGEN (3.6 – 3.7 mg/L)	UP 3%
TOTAL CYANIDE (1.43 – 0.03)	DOWN <mark>98</mark> %
CHEMICAL OXYGEN DEMAND (2,200 – 1,500 mg/L)	DOWN 32%
BIOCHEMICAL OXYGEN DEMAND (8.4 - 8.2 mg/L)	DOWN 2%
SUSPENDED SOLIDS (40 – >4 mg/L)	
SUSPENDED SOLIDS (40 – >4 mg/L) PHOSPHATE (16.49 – 11.55 mg/L)	
	DOWN 30%
PHOSPHATE (16.49 – 11.55 mg/L)	DOWN 30%)DOWN 15%
PHOSPHATE (16.49 – 11.55 mg/L) ALKALINITY - CARBONATE as CaCO3 (7,907 – 6,730 mg/L	DOWN 30%)DOWN 15% DOWN 12%
PHOSPHATE (16.49 – 11.55 mg/L) ALKALINITY - CARBONATE as CaCO3 (7,907 – 6,730 mg/L TOTAL ORGANIC CARBON (990 – 876 mg/L)	DOWN 30%)DOWN 15% DOWN 12% DOWN 11%
PHOSPHATE (16.49 – 11.55 mg/L) ALKALINITY - CARBONATE as CaCO3 (7,907 – 6,730 mg/L TOTAL ORGANIC CARBON (990 – 876 mg/L) CHLORIDE (1,796 – 1,593mg/L)	DOWN 30%)DOWN 15% DOWN 12% DOWN 11% DOWN 10%

ELEMENTS AND MOLECULES ADDED TO THE NORLANDS TIP LEACHATE FLUID AFTER 5 MINUTES WITHIN THE PLASMOID CREATOR

ELEMENTS ADDED TO THE LEACHATE AFTER 5 MINUTES OF OPERATION

CHROMIUM (53 – 75 ug/L)UP	30%
LEAD (8 – 15 ug/L)UP	47%
COPPER (40 – 5,400 ug/L) UP 135 XUP	13,500%
ZINC (220 – 260 ug/L)UP	15%

MOLECULES ADDED TO THE LEACHATE AFTER 5 MINUTES OF OPERATION

TOTAL OXIDISED NITROGEN (3.6 – 3.7 mg/L)	UP 3%
NITRATE (21.3 – 23.4 mg/L)	UP 9%
NITRITE (<0.01 – 1.28 mg/L)	UP 99 TO 100%
SULPHIDE (0.10 – 0.11 mg/L)	UP 9%
PH (8.7 – 8.8)	

PART 2 OF 20 – MSAART PATENT APPLICATION NOTES DRAFT 518,400 – 22:22:22 THUR 22ND SEPT 2022 94 © STRIKE FOUNDATION GUARANTEE LIMITED | MALCOLM BENDALL 2022 | GRAPHICS - STEVE EARL

ELEMENTS SUBTRACTED FROM THE LEACHATE AFTER 8 MINUTES OF OPERATION

MAGNESIUM DECREASE (86 – 75 mg/L)	DOWN 13%
SODIUM DECREASE (1,279 – 1,109 mg/L)	DOWN 13%
POTASSIUM DECREASE (638 – 549 mg/L)	DOWN 13%
CALCIUM DECREASE (72 – 51 mg/L)	DOWN 31%
CHLORIDE (1796 – 1738)	DOWN 3 %
CHROMIUM DECREASE (53 - 42 ug/L)	DOWN 21%
NICKEL DECREASE (140 – 110 ug/L)	DOWN 21%
MANGANESE DECREASE (150 – 120 ug/L)	DOWN 21%
IRON DECREASE (2.20 – 2.10 ug/L)	DOWN 5%
ARSENIC DECREASE (100 - 98 ug/L)	DOWN 2%

MOLECULES SUBTRACTED FROM THE LEACHATE AFTER 8 MINUTES OF OPERATION

DISSOLVED METHANE DECREASE (0.59 – 0.05mg/L)DOWN 8%	,
AMMONIA [AS NH4] (1,787 – 1,698 mg/L)DOWN 5%)
AMMONIACAL NITROGEN (1,385 – 1,316 mg/L)DOWN 5%)
TOTAL OXIDISED NITROGEN (3.6 - 3.9 mg/L)UP 8%	
<i>NITRITE</i> (< 0.01 – < 0.01mg/L)SAME 0%	
<i>NITRATE</i> (21.3 – 28.6 mg/L)UP 25%)
CHEMICAL OXYGEN DEMAND (2,200 – 3,100 mg/L)UP 30%)
BIOCHEMICAL OXYGEN DEMAND (8.4 – 8.3mg/L)DOWN 1%	
TOTAL CYANIDE DECREASE (1.43 – 0.07 mg/L)DOWN 95%	,
PHOSPHATE DECREASE (16.49 – 9.11 mg/L)DOWN 55%	
ALKALINITY - CARBONATE as CaCO3 (7,907 – 7204 mg/L)DOWN 9%	
SULPHATE [AS SO4] (136 – 109)DOWN 20%)
CALCIUM CARBONATE (7,906 – 7,204 mg/L)DOWN 9%	,)

ELEMENTS AND MOLECULES ADDED TO THE NORLANDS TIP LEACHATE FLUID

ELEMENTS ADDED TO THE LEACHATE AFTER 8 MINUTES OF OPERATION

COPPER – 45 x INCREASE (40 – 7,500 ug/L)UP 4	1,500%
ZINC – INCREASE (220 – 320 ug/L)UP	30%
NITRATE – INCREASE (21.3 – 28.6 mg/L)UP	25%
LEAD - INCREASE (8 – 10 ug/L)UP	20%

MOLECULES ADDED TO THE LEACHATE AFTER 8 MINUTES OF OPERATION

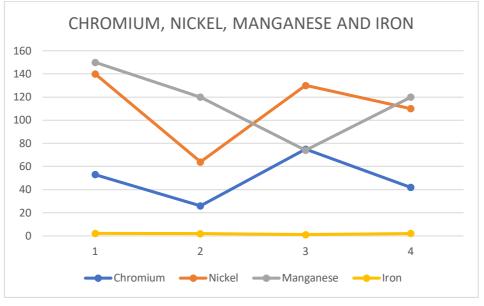
AMMONIA – NET INCREASE OF 10 LITRES RUNNING	
TOTAL OXIDISED N (3.6 - 3.9 mg/L)UP	8%
NITRITE (< 0.01 – < 0.01mg/L)SAME	0%
NITRATE (21.3 – 28.6 mg/L)UP	25%
SULPHIDE (0.10 – 0.12 mg/L)UP	20%
ELECTRICAL CONDUCTIVITY (12,445 - 13,160 uS/cm)UP	5%
PH (Ph 8.7 to Ph 8.8)UP	1%
SAART PATENT APPLICATION NOTES DRAFT 518,400 – 22:22:22 THUR 22 ND SEPT 2022	95

PART 2 OF 20 – MSAART PATENT APPLICATION NOTES DRAFT 518,400 – 22:22:22 THUR 22ND SEPT 2022 © STRIKE FOUNDATION GUARANTEE LIMITED | MALCOLM BENDALL 2022 | GRAPHICS - STEVE EARL

ELEMENTS AND MOLECULES REMOVED FROM THE NORLANDS TIP LEACHATE FLUID AFTER 8 MINUTES WITHIN THE PLASMOID CREATOR

ELEMENTS ELIMINATED FROM THE LEACHATE AFTER 8 MIN	CYANIDE AND NITRITE
MOLECULES ELIMINATED FROM THE LEACHATE AFTER 8 MIN	SUSPENDED SOLIDS

ELEMENTS SUBTRACTED AND ADDED FROM LEACHATE AFTER 3 MINUTES OF OPERATION


CHROMIUM (53 – 26 ug/L)	DOWN 49%
NICKLE (140 – 64 ug/L)	DOWN 46%
MANGANESE (150 – 120 ug/L)	DOWN 20%
IRON (2.20 – 2.00 ug/L)	
ARSENIC (100 – 52ug/L)	

ELEMENTS SUBTRACTED AND ADDED FROM LEACHATE AFTER 5 MINUTES OF OPERATION

CHROMIUM (53 – 75 ug/L)	UP	30%
NICKLE (140 – 130 ug/L)	DOW	N 7%
MANGANESE (150 – 74 ug/L)	DOW	'N 50%
IRON (2.20 – 1.20 ug/L)	DOW	′N 54%
ARSENIC (100 – 85 ug/L)	DOW	/N 15%

ELEMENTS SUBTRACTED AND ADDED FROM LEACHATE AFTER 8 MINUTES OF OPERATION

CHROMIUM DECREASE (53 - 42 ug/L)	DOWN 21%
NICKEL DECREASE (140 – 110 ug/L)	DOWN 21%
MANGANESE DECREASE (150 – 120 ug/L)	
IRON DECREASE (2.20 – 2.10 ug/L)	
ARSENIC DECREASE (100 - 98 ug/L)	

DIAGRAM 84 -

Chromium	Cr	53	26	75	42
Nickel	Ni	140	64	130	110
Manganese	Mn	150	120	74	120
Iron	Fe	2.2	2	1.2	2.1

PART 2 OF 20 – MSAART PATENT APPLICATION NOTES DRAFT 518,400 – 22:22:22 THUR 22ND SEPT 2022 97 © STRIKE FOUNDATION GUARANTEE LIMITED | MALCOLM BENDALL 2022 | GRAPHICS - STEVE EARL

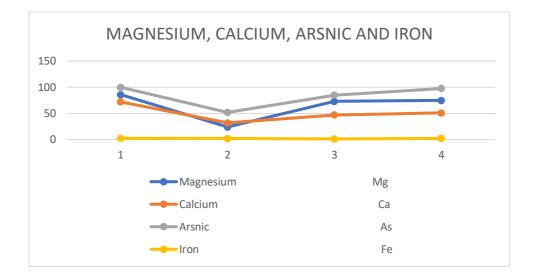
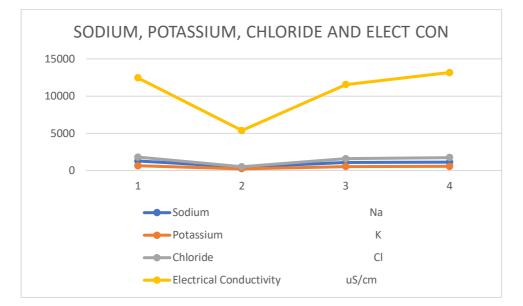


DIAGRAM 85 -

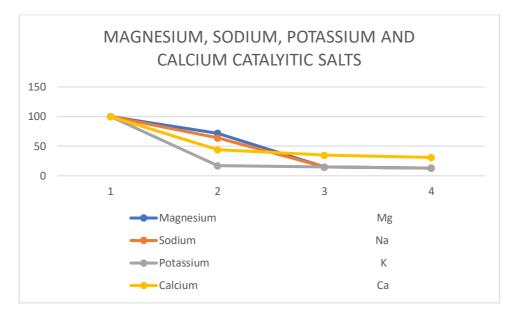
	ELEMENT	UNTREATED	3 MIN	5 MIN	8 MIN
Magnesium	Mg	86	24	73	75
Calcium	Ca	72	32	47	51
Arsenic	As	100	52	85	98
Iron	Fe	2.2	2	1.2	2.1

ELEMENTS SUBTRACTED FROM THE LEACHATE AFTER 3 MINUTES OF OPERATION


MAGNESIUM (86 – 24 mg/L)	DOWN <mark>72%</mark>
SODIUM (1,279 – 462 mg/L)	DOWN <mark>64%</mark>
POTASSIUM (638 – 532 mg/L)	DOWN 17%

ELEMENTS SUBTRACTED FROM THE LEACHATE AFTER 5 MINUTES OF OPERATION

MAGNESIUM (86 – 73 mg/L)	DOWN 15%
SODIUM (1,279 – 1,080 mg/L)	DOWN 15%
POTASSIUM (638 – 532 mg/L)	DOWN 15%


ELEMENTS SUBTRACTED FROM THE LEACHATE AFTER 8 MINUTES OF OPERATION

MAGNESIUM DECREASE (86 – 75 mg/L)	DOWN <mark>13%</mark>
SODIUM DECREASE (1,279 – 1,109 mg/L)	DOWN <mark>13%</mark>
POTASSIUM DECREASE (638 – 549 mg/L)	DOWN 13%

DIAGRAM 86 -

	ELEMENT	UNTREATED	3 MIN	5 MIN	8 MIN
Sodium	Na	1279	462	1080	1109
Potassium	К	638	221	532	549
Chloride	Cl	1796	504	1594	1738
Electrical Conductivity	uS/cm	12,445	5375	11545	13160

DIAMAGNETIC PARAMAGNETIC NORTH Ne F WEST Н EAST (C) (P **(B)** -2 K SOUTH DIAMAGNETIC PARAMAGNETIC

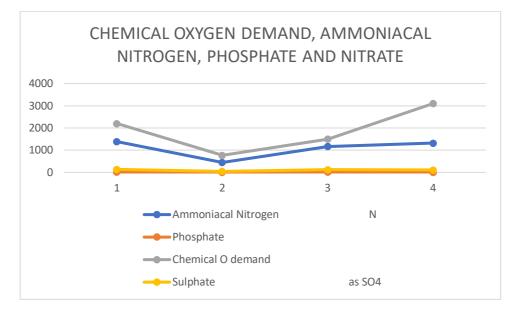
DIAGRAM 88 - Mg and Ca are opposites on the same purple elemental frequency plane Na and K share the next indigo elemental frequency plane

PART 2 OF 20 – MSAART PATENT APPLICATION NOTES DRAFT 518,400 – 22:22:22 THUR 22ND SEPT 2022 100 © STRIKE FOUNDATION GUARANTEE LIMITED | MALCOLM BENDALL 2022 | GRAPHICS - STEVE EARL

DIAGRAM 87 -

NITROGEN SUBTRACTED AND ADDED FROM LEACHATE AFTER 3 MINUTES OF OPERATION

AMMONIA [AS NH4] (1,787 – 576)	DOWN 68%
AMMONIACAL NITROGEN [AS N] (1,386 – 446 mg/L)	
TOTAL OXIDISED NITROGEN (3.6 – 2.6 mg/L)	DOWN 28%
NITRITE (0.01 – 0.59 mg/L)	UP 98%
NITRATE (21.3 – 26.1mg/L)	


NITROGEN SUBTRACTED AND ADDED FROM LEACHATE AFTER 5 MINUTES OF OPERATION

AMMONIA [AS NH4] (1,787 – 1,505)	DOWN 16%
AMMONIACAL NITROGEN [AS N] (1,386 – 1,166 mg/L)	
TOTAL OXIDISED NITROGEN (3.6 – 3.7 mg/L)	UP 3%
NITRATE (21.3 – 23.4 mg/L)	UP 9%
NITRITE (<0.01 – 1.28 mg/L)	.UP 99 TO 100%

NITROGEN SUBTRACTED AND ADDED FROM LEACHATE AFTER 8 MINUTES OF OPERATION

AMMONIA [AS NH4] (1,787 – 1,698 mg/L)DOWN	5%
AMMONIACAL NITROGEN (1,385 – 1,316 mg/L)DOWN	5%
TOTAL OXIDISED NITROGEN (3.6 - 3.9 mg/L)UP	8%
NITRITE (0.01 – mg/L)SAME	0%
NITRATE (21.3 – mg/L)UP	25%

DIAGRAM 89 -

	ELEMENT	UNTREATED	3 MIN	5 MIN	8 MIN
Ammoniacal Nitrogen	Ν	1385	447	1166	1316
Phosphate	Р	16.49	5.95	11.55	9.11
Chemical O demand	0	2200	770	500	3100
Sulphate as	SO4	136	45	123	109

PART 2 OF 20 – MSAART PATENT APPLICATION NOTES DRAFT 518,400 – 22:22:22 THUR 22ND SEPT 2022 101 © STRIKE FOUNDATION GUARANTEE LIMITED | MALCOLM BENDALL 2022 | GRAPHICS - STEVE EARL

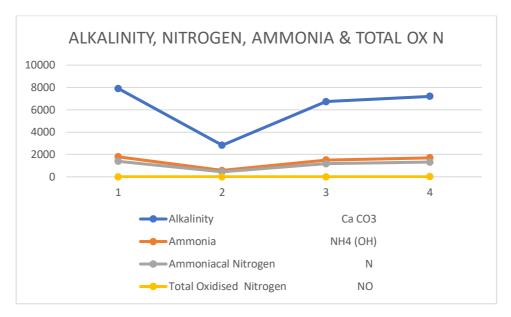


DIAGRAM 90 -

	ELEMENTS	UNTREATED	3 MIN	5 MIN	8 MIN
Alkalinity	Ca CO3	7907	2825	6730	7205
Ammonia	NH4 (OH)	1788	576	1505	1699
Ammoniacal Nitrogen	Ν	1385	447	1166	1316
Total Oxidised Nitrogen	NO	3.6	2.6	3.7	3.9

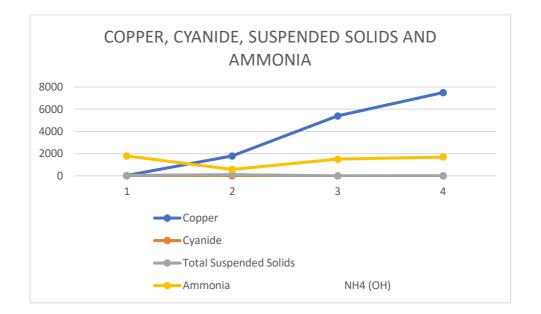


DIAGRAM 91 -

	ELEMENTS	UNTREATED	3 MIN	5 MIN	8 MIN
Copper	Cu	40	1,800	5400	7500
Cyanide	HCN	1.43	0.53	0.03	0.01
Total Suspended Solids		40	108	4	4
Ammonia	NH4 (OH)	1788	576	1505	1699

ELEMENTS AND MOLECULES REDUCED BY 50% FROM THE NORLANDS TIP LEACHATE FLUID AFTER 3 MINUTES WITHIN THE PLASMOID CREATOR

ELEMENTS REDUCED BY 50 % :-

ARSNIC (100 – 52 ug/L)	52%
CHROMIUM (53 – 26 ug/L)	49%
NICKLE (140 – 64 ug/L)	46%
CALCIUM (72 – 32 mg/L)	44%

MOLECULES REDUCED BY 50 % :-

ELECTRICAL CONDUCTIVITY (12,445 -5,375 uS/cm)...43%

ELEMENTS AND MOLECULES REDUCED BY 66 % (2/3) FROM THE NORLANDS TIP LEACHATE AFTER 3 MINUTES WITHIN THE PLASMOID CREATOR

ELEMENTS REDUCED BY 66 %:-

MAGNESIUM SODIUM, POTASSIUM, CYANIDE, CALCIUM CARBONATE

MOLECULES REDUCED BY 66 %:-

PHOSPHATE AMMONIACLE NITROGEN (AS N) AMMONIA (AS NH4) SULPHATE (AS SO4) SULPHIDE CHEMICAL OXYGEN DEMAND

ELEMENTS AND MOLECULES INCREASED BY 50% (1/2) FROM THE NORLANDS TIP LEACHATE FLUIDAFTER 5 MINUTES WITHIN THE PLASMOID CREATOR

ELEMENTS INCREASED BY 50 % :-

PHOSPHATE

MOLECULES INCREASED BY 50 %: -

CHEMICAL OXYGEN DEMAND TOTAL ORGANIC CARBON

ELEMENTS AND MOLECULES REDUCED BY 66% (2/3) FROM THE NORLANDS TIP LEACHATE FLUIDAFTER 5 MINUTES WITHIN THE PLASMOID CREATOR

ELEMENTS REDUCED BY 66 %:-

MOLECULES REDUCED BY 66 %:-

ELEMENTS AND MOLECULES REDUCED BY 66% (2/3) FROM THE NORLANDS TIP LEACHATE FLUIDAFTER 8 MINUTES IN THE PLASMOID CREATOR

ELEMENTS REDUCED BY 66 %:-

MOLECULES REDUCED BY 66 %:-

ELEMENTS AND MOLECULES ELIMINATED BY 50% (1/2)FROM THE NORLANDS TIP LEACHATE FLUIDAFTER 8 MINUTES IN THE PLASMOID CREATOR

ELEMENTS ELIMINATED-

MOLECULES INCREASED BY 50 %:-

ELEMENTS AND MOLECULES REDUCED BY 66% (2/3)FROM THE NORLANDS TIP LEACHATE FLUIDAFTER 8 MINUTES IN THE PLASMOID CREATOR

ELEMENTS INCREASED BY 66 % :-

MOLECULES INCREASED BY 66 %: -

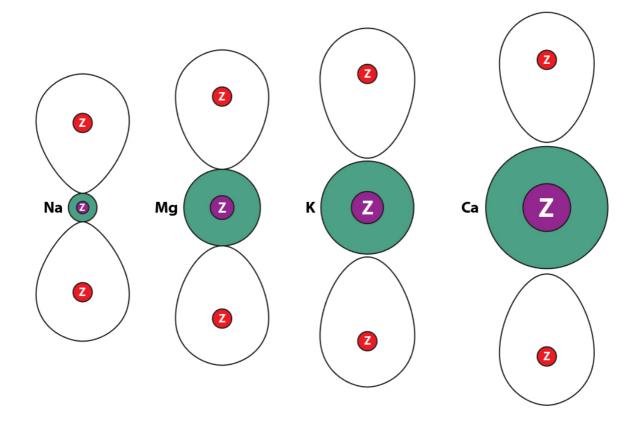


DIAGRAM 92 -

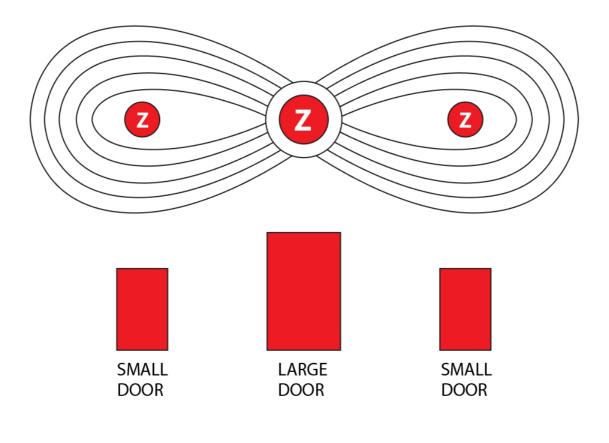


DIAGRAM 93 -

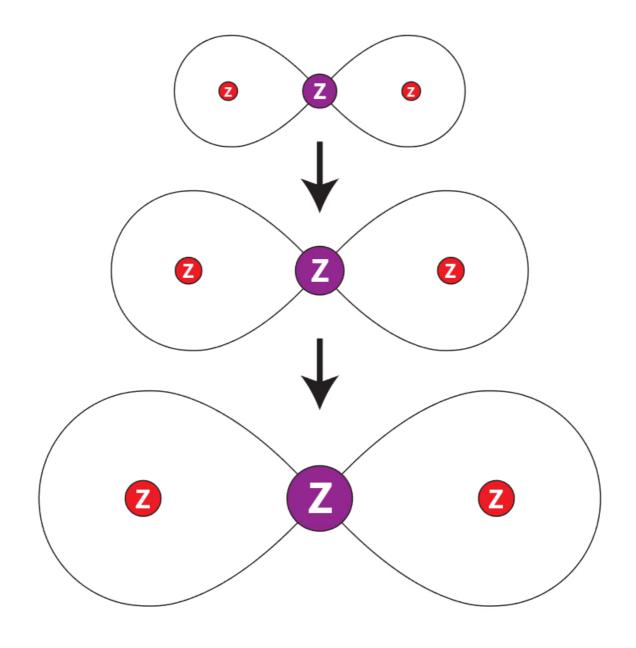


DIAGRAM 94 –